# Molecular secrets of membrane barrier modulators

Jamshed Anwar
Institute of Pharmaceutical Innovation
University of Bradford



## Acknowledgements

Rebecca Notman, KCL (now Warwick)
Andrey Gurtovenko, IPI
Wim Briels, Twente, The Netherlands
Wouter den Otter, Twente, The Netherlands
Massimo Noro, Unilever Port Sunlight







# Molecular secrets of membrane barrier modulators

- Significance

  Drug & gene delivery; Membrane-lipid therapy;

  Cryoprotection
- Molecular dynamics simulation
- Interaction of small molecules with DPPC bilayers Oleic acid, DMSO, Ethanol, Urea
- Interaction of DMSO with ceramide bilayers Free energies of pore formation
- Concluding remarks

#### Skin lipids

- Ceramide (~50%) (9 types in skin)
- Cholesterol (~25%)
- Free fatty acids (~10-20%)



Ceramide 2





Extracted skin lipid behaviour is qualitatively similar to dipalmitoylphosphatidylcholine (DPPC)



**DPPC** 

#### Chemical penetration enhancers

- Interact with the skin lipids
- Increase the permeability of membranes to drug molecules
- Mechanism of action is not fully understood at the molecular level





### Molecular simulation

#### Reductionism

'Nothing exists except atoms and empty space; all else is opinion' Democritus 430-380 BC

Molecular level understanding

### Why simulate?

Cannot do experiments that we would like to do (Molecular level resolution)
Predict behaviour

#### Molecular simulations

Atomistic; Input is atom-atom interactions only No 'fudge' factors

## Interaction potential (molecular mechanics)

$$U = \sum_{i < j} \sum 4\varepsilon_{ij} \left[ \left( \frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left( \frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}$$

$$+ \sum_{bonds} \frac{1}{2} k_b (r - r_0)^2$$



$$+ \sum_{angles} \frac{1}{2} k_a (\theta - \theta_0)^2$$

$$+ \sum_{torsions} k_{\phi} \left[ 1 + \cos(n\phi - \delta) \right]$$

Parameters empirical; from experiment and optimised



Pair-interactions N(N-1)/2

LJ: short ranged R<sub>c</sub> qq: long-ranged (Ewald summation)

### Molecular dynamics simulation



1. Initial configuration NPT G

- 2. Equilibration
- 3. Production (averages)

Simulate time evolution of a system of atoms/molecules

$$\mathbf{f}_{i} = -\sum_{j} \nabla_{\mathbf{r}_{i}} U(\mathbf{r}_{ij})$$

$$\mathbf{r}_{i} (t + \Delta t) = 2\mathbf{r}_{i}(t) - \mathbf{r}_{i}(t - \Delta t) + \frac{\mathbf{f}_{i}(t)}{m_{i}} \Delta t$$

Periodic boundaries & minimum image convention

NVE, NVT, NPT & NoT Employ extended Lagrangian e.g. L(r,p,H,s)

#### Limitations

Limited system size Cpu time (100ps -> 10ns) Accuracy of interaction potential

# Molecular dynamics simulation of dipalmitoylphosphatidylcholine (DPPC)



256 DPPC 1 ns

# How faithful are molecular simulation? Comparison with experiment

- Electron density profile
- Bilayer repeat L<sub>z</sub>
- Volume per lipid V<sub>L</sub>
- Area per lipid A<sub>L</sub>
- Water penetration (depth)
- Conformation of molecules
- Order parameter for alkyl chain
- Diffusion constants
- Bending modulus
- Area compressibility modulus

## Interaction of oleic acid with DPPC bilayer



Oleic acid easily accommodated by the DPPC lipids; No phase separation Notman, Noro & Anwar (2007) J Phys Chem B

## Interaction of DMSO with DPPC bilayers



Notman et al. (2007) J Amer Chem Soc Gurtovenko & Anwar(2007a) J Phys Chem B

#### DMSO makes DPPC membrane floppy



Area compressibility modulus  $K_A$  330±20 mN/m pure DDPC 90±10 mN/m 20% DMSO

Bending modulus κ 5.6x10<sup>-21</sup> J pure DPPC 1.1x10<sup>-21</sup> J for 20% DMSO

Surface tension v. area per lipid Circles: without DMSO; Squares: 20% DMSO

Notman et al. (2007) J Amer Chem Soc

### DMSO-induced water pore formation



Pore formation timescale Dependent on [DMSO] Typically > 5 -10 ns

Pores stable for up to 80 ns

Explains for the first time permeability enhancement of hydrophillic molecules

### Permeability enhancement in action: Ion leakage across DMSO-induced water pores



Gurtovenko & Anwar (2007b), J Phys Chem B

### DMSO induces translocation (flip-flops) of lipids



Gurtovenko & Anwar (2008) Langmuir

#### Rationalization of DMSO's pharmacological effects

#### Insights from simulations

- Makes membrane more floppy
- Induces water pores; enhances permability of ions and water
- Destroys bilayer structure at high [DMSO]
- Induces flip-flops (induces programmed cell death?)

#### **Applications of DMSO**

- Permeability enhancement
- Cryoprotection
   Floppier membrane enable better accommodation of mechanical stress during ice formation & melting; Water pores control osmotic imbalance
- Local analgesic Disrupts action potential by allowing ion leakage in nerves
- Cell fusagen in cell biology Reduction in compressibility modulus and bending rigidity + pore formation

## Effect of ethanol on lipid bilayers: Low concentrations (up to 10 mol %)





No ethanol

5 mol % ethanol

### Effect of ethanol on lipid bilayers: Interdigitation of lipid hydrocarbon chains



# Effect of ethanol on lipid bilayers: High concentrations (~15 mol%)



Gurtovenko & Anwar (2009) J. Phys. Chem. B

# Effect of urea on lipid bilayers





No urea

2M of urea

# Structure of ceramide bilayer as a function of DMSO concentration in the solvent



## Ceramide bilayers containing DMSO



## Ceramide bilayers containing DMSO



$$K_A = \begin{cases} 7900 \,\text{mJ/m}^2 & 0\% \\ 3700 \,\text{mJ/m}^2 & @ 10\% \\ 190 \,\text{mJ/m}^2 & 60\% \end{cases}$$

### Ceramide/fatty acid/cholesterol bilayer (1:1:1)



## Free energy of pore formation

#### Pores

Cell death; Genes/drug delivery (eg electroporation); Lipid asymmetry, Flip-flops & signalling



$$\Delta F = 2\pi r \gamma_L - \pi r^2 \gamma_S$$
 2-d nucleation

Where  $\gamma_S$  is the surface tension (surface energy)  $\gamma_L$  is the line tension (edge energy)

Assumes surface lost due to lipids going into bilayer!

# Free energy of pore formation in ceramide bilayers



# Induced pore in ceramide bilayer containing 60 mol% DMSO



## Induced pore in ceramide bilayers



"hydrophobic pore" but .... where is the water?

Notman et al (2008) Biophys. J

# Schematic structures of pores



## Should hydrophobic pores contain water?





$$F_{\text{edge}}(R) = 2\pi R h \gamma_{l/v} + 2\pi R^2 \gamma_{w/v}$$

$$\rightarrow R_{eq} = \frac{\gamma_{l/w} - \gamma_{l/v}}{\gamma_{w/v}} h \approx 2 \text{nm}$$

Notman et al (2008) Biophys. J

## Concluding remarks

#### **DPPC** bilayers

- Oleic acid: accommodated within bilayer without much perturbation
- DMSO induces water pores and makes membrane floppy; induces flip-flops
  - → rationalization of DMSO's pharmacological activity
- Ethanol: high concentrations cause internalisation of H2O and ions into the centre of bilayer forming micelle-like structures that may serve as delivery packages
- Urea: replaces H2O at the interface; significance??

#### Ceramide bilayers

■ DMSO induces gel → fluid phase transition; Explains DMSO's role as a penetration enhancer in transdermal drug delivery; Significance of vapour pores in skin.

#### **Future**

- Impedance measurements & AFM; transport through bilayers
- In-silico screening of molecules that enhance &/or retard permeability