TRANSDERMAL FLUX PREDICTIONS FOR HIGHLY LIPOPHILIC COMPOUNDS: COMPARISON WITH EXPERIMENTAL RESULTS

Sevgi Güngör^{1,2}, M. Begoña Delgado-Charro¹, Valérie Masini-Eteve³, Russell O. Potts⁴, Richard H. Guy¹

¹Department of Pharmacy and Pharmacology, University of Bath, U.K. ²Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey. ³Besins Healthcare SA, Brussels, Belgium. ⁴Russ Potts Consulting LLC, San Francisco, CA, U.S.A. e-mail: sgungor@istanbul.edu.tr

BACKGROUND & AIMS

- To evaluate the feasibility of delivering transdermally a series of highly lipophilic compounds (log P ~ 4-7), comprising several selective estrogen receptor modulators (SERMs) and a modified testosterone (danazol).
- To explore whether the fluxes achieved might be sufficient to allow for 'local' application and drug delivery to underlying subcutaneous tissues, avoiding thereby undesirable systemic side-effects when treating breast cancer.
- To compare the *in vitro* experimental fluxes of the drugs considered with their predicted transport using the Potts & Guy algorithm.

Prediction model & experimental studies

Step 1: Calculation of lipophilicity and aqueous solubility of compounds

* Log P_{o/w} and aqueous solubilities (log S) of the drugs were estimated with the "ALOGPS 2.1 Programme" [1].

Step 2: Prediction of maximum drug flux (J_{max}) across skin

$$J_{\max} \cong \frac{D}{h} * K_{skin / vehicle} * C_{vehicle}^{sat}$$

$$K_{p} = \frac{D * K_{skin / water}}{h}$$

Calculate permeability coefficient (K_p) of each drug across skin from aqueous solution using the Potts & Guy equation [2]:

$$\log K_p = -2.7 + 0.71 * \log P - 0.0061 * MW$$

Calculate corrected permeability coefficient (K_{pcorr}) following Cleek & Bunge [3] for highly lipophilic species for which viable epidermis can contribute to rate-control:

$$K_p^{corr} = \frac{K_p}{1 + \frac{K_p \bullet \sqrt{MW}}{2.6}}$$

 $J_{max}: maximum flux; D: diffusion coefficent; K: stratum corneum-vehicle partition coefficent, h: stratum corneum path lenght; C = to the stratum conduction of the stratum conductin conductin of the stratum conduction of the stratum conductin$ <u>Step 3:</u> Determine J_{max} from K_p x estimated solubility of drug in water

Step 4: In vitro permeation studies

* In vitro experimental fluxes (*J*_{expt}) from saturated hydroalcoholic solutions (70:30; ethanol:water) were determined in side-by-side diffusion cells (area: 0.71 cm2; volume: 3.2 ml) through dermatomed (750 µm) pig skin at 37±0.5°C. Samples were analyzed by HPLC.

 0.14 ± 0.08

 0.21 ± 0.13

10.40

4.75

8.81

0.31

0.02

0.14

the compo		Jisiuereu	•						
Compound [®]	MW	Model ^b	Log Ko/w	10 ² xC _{sat} (mg.cm ⁻³)	Log <i>K</i> _p (cm. h ⁻¹)	10 ² xK _p (cm. h ⁻¹)	10 ² xK _{pcorr} (cm. h ⁻¹)	J _{max} (μg.cm ⁻² .h ⁻¹)	J _{expt}
Clomiphene	405.97	AlogPs	6.08	0.04	-0.819	15.2	6.97	0.03	0.1±0.09
		Average logPs	6.89	0.25	-0.244	57.0	10.5	0.26	
Danazol	337.46	AlogPs	3.61	1.76	-2.162	0.69	0.66	0.12	0.30±0.08
		Average logPs	4.02	0.76	-1.871	1.35	1.23	0.09	
Droloxifene	387.52	AlogPs	5.43	0.31	-1.170	6.76	4.47	0.14	0.06±0.03
		Average logPs	6.03	1.77	-0.744	18.00	7.62	1.35	
Endoxifen	373.5	AlogPs	5.32	0.09	-1.164	6.85	4.54	0.04	1.55±1.28
		Average logPs	5.64	0.39	-0.937	11.60	6.22	0.24	
4-OH Tamoxifen	387.52	AlogPs	5.44	0.30	-1.163	6.87	4.52	0.14	0.52±0.26
		Average	5.92	1.12	-0.822	15.10	7.04	0.79	

Table: Estimated physicochemical properties and predicted skin permeability parameters of

0
H
S
U
5
ō
0
02
N
N
ES

6.46

5.65

6.45

Average logPs

AlogPs

Theoretical calculations presented are based only on parent drug. P AlogPs model, in which ALOGPs and ALOGpS values predicted by the algorithm were taken as log K_{alw} and C_{aux}, respectively. Average AlogPs model uses average values of these two parameters derived from several different algorithms.

0.30

0.04

0.15

Predicted fluxes were in good general agreement with the experimental results (Figure).

-0.343

-1.124

-0.556

45.40

7.51

27.80

CONCLUSIONS

371 52

405.97

Fluxes of highly lipophilic compounds can be reasonably predicted.

From previous clinical studies [4, 5] and experimental fluxes observed, topical delivery of therapeutically useful doses of certain compounds to cancerous breast tissue and/or to treat benign breast diseases (such as mastalgia) may be feasible.

- Experimental values (except droloxifene) were typically greater than the predicted fluxes.
- Possibly due to the fact that prediction of \mathcal{J}_{max} is based on an aqueous vehicle, whereas experimental formulation was a ethanol/water (70:30). ٠.
- Higher experimental fluxes could be due to the action of ethanol as a skin penetration enhancer.

Figure: Comparison of experimental and predicted fluxes using either ALOGPs values (orange bars) or average ALOGPs values (red bars).

REFERENCES

http://www/vcclab.org
Potts RO, Guy RH. *Pharm. Res.* 9 (1992) 663-669.

[3] Cleek RL, Bunge AL. *Pharm. Res.* **10** (1993) 497-506
[4] Rouanet P, *et al. J. Clin. Oncol.* **23** (2005) 2980-2987

[5] Mansel R, et al. Breast Cancer Res. Treat. 106 (2007) 389-397.

ACKNOWLEDGEMENTS

We thank Ascend Therapeutics, Inc. and the Scientific and Research Council of Turkey (TUBITAK) for financial support.

Skin and Formulation, 3rd Symposium & Skin Forum, 10th Annual Meeting, March 9-10, 2009, Versailles, France